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ABSTRACT  
Forces in virtual environment (FIVE) simulator software developed by HAVELSAN provide a 
comprehensive tactical and operational training environment in a safe and cost-effective way, utilizing 
various virtual warfare equipment (such as weapons, sensors, and communication tools etc). Currently, 
behaviour models managing FIVE entities is highly dependent on the rule-based behaviour developed by 
field experts and system engineers. However, the rule-based operation of FIVE software requires intensive 
programming and field experts’ guidance, and hence highly labour intensive. Furthermore, complexity and 
burden of this task increases significantly with the complexity of the scenario. In addition, the virtual entities 
with rule-based behaviour have standard and predictable reactions to their environments. Therefore, in this 
study we present the transition studies from rule-based behaviour to learning-based adaptive behaviour via 
reinforcement learning techniques coupled with other machine learning techniques, namely FIVE-ML 
project. For this aim, primarily reinforcement learning based behaviour models are trained for both air-to-
air and air-to-ground scenarios up to six virtual entities. It is observed that virtual entities trained with 
reinforcement learning dominates existing rule-based behaviour models. During these experiments, it is also 
observed that utilizing supervised learning as a starting point before reinforcement learning reduces the 
training time significantly and creates more realistic behaviour models.  

1.0 INTRODUCTION 

Today, training pilots who will use aircrafts is of foremost importance. Training pilots with real aircrafts is 
quite difficult for reasons such as airspace regulations, excessive costs and risks that may occur during 
training, and complexity of creating a real-world scenario including realistic defence and warfare platforms 
used by adversaries or allies. Flight simulations used in pilot training often work integrated into tactical 
environment simulations. Through these tactical environment simulations, pilots are trained via controlling 
high-fidelity airplane models in the presence of many low-fidelity entities completing the scenario. These 
low-fidelity assets are created and controlled by a computer and often named as Computer Generated Forces 
(CGF) [1], which are autonomous units representing defence or attack systems on air, land or sea surfaces. 

CGFs are used in the preparation process for the deployment of personnel, in tactical training, or in the 
development of new strategies. CGFs need different programming for each application (or each scenario). 
These forces, created by traditional methods, cause non-adaptive and inflexible patterns of behaviour. This 
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leads to students receiving simulation training in the presence of statically programmed assets and reducing 
the quality of their training. When new scenarios are necessary, specialists are needed to create new 
scenarios. In addition, since scenario creation will be performed using classic control branches, it is often 
infeasible to consider all possibilities in the process of creating a new scenario, even possible, it is a quite 
challenging task. For these reasons, there has been a growing need for more realistic virtual environments 
and new scenarios to adapt to the ever-changing world to simulate both the pilot candidates own missions 
and the current capabilities and tactics of opposing forces. 

In this study, a transition towards artificial intelligence-oriented behaviour modelling rather than traditional 
scenario-specific modelling was proposed as a solution to the problems described earlier. In other words, 
virtual entities will be transformed into dynamic virtual entities that can learn. But there are many situations 
those virtual entities need to consider in their training processes. First, they must learn to respond 
appropriately to the environmental factors they perceive with their sensors. It must then recognize his friends 
and foes and act in accordance with their class information and the types of munitions that attached on them. 
It should be able to act with team actions in cooperation with his friends. 

The preferred method of machine learning for adding intelligence to virtual assets is reinforcement learning 
(RL) [2] for a fundamental reason: the actions that the entities will take has delayed consequences. In recent 
years, RL has been recognized as a new way to solve complex and unpredictable control problems compared 
to traditional control methods and utilized in many fields such as robotics, computer vision, autonomous 
driving, advertising, medicine and healthcare, chemistry, games, and natural language processing [3]–[9]. 
The studies in the literature have boosted since the introduction of deep learning to RL concepts (i.e., deep 
RL [10]) as in the case of many challenging computer vision and natural language processing tasks [11]–[15] 

For this aim, in this study (i.e., FIVE-ML), the first stage experiments of the transition from the rule-based 
behaviour model of FIVE software of HAVELSAN to the RL-based behaviour models have been 
implemented. From these experiments, it is shown that intelligent virtual entities trained with RL algorithms 
outperform the currently existing rule-based entities of HAVELSAN in both air-to-air and air-to-ground 
scenarios. Moreover, the joint implementation of imitation learning [16], [17] and RL has also performed 
successfully, which has fastened complete transition process of FIVE software.  

It is envisaged that a simulation that develops new strategies by learning from the choices made by pilot 
candidates will take pilot training to a much different point. When the project is completed, a new system 
will be designed that will allow the training of more equipped and specialized fighter pilots in their fields. An 
existing rule-based scenario system will evolve into a system that can update itself. Thus, pilot candidates 
will have the opportunity to develop ideas against new strategies discovered by intelligent entities instead of 
being content with the knowledge and experience of the experts in the field. In addition, from a scenario 
mechanism that has been prepared with a lot of effort, the computational scenario automation mechanism 
will automate the entire process. 

2.0 RELATED WORK 

Related work in the literature is given under the two main categories. These are learning-based behaviour 
modelling in flight simulation environments and actor-critic networks in deep reinforcement learning.  

2.1 Learning-based Behaviour Modelling in Flight Simulation Environments 
Rapid advances in computing hardware technologies and advances in RL algorithms have brought up the 
possibility that virtual entities in tactical simulators can gain intelligence with the experience gained from 
interacting with the environment. In traditional simulation technologies, the behaviour of virtual entities is 
governed by scripts that anticipate predetermined actions on a particular scenario. The preparation of rule-
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based scripts brings along problems such as high complexity, rigid and unrealistic behaviour. Numerous 
studies have been conducted in the literature to overcome these problems. In this section, the previous 
studies will be examined within the relation to FIVE-ML. 

Especially in combat aircraft training simulators, one-to-one air to air combat, also known as dogfighting, is 
one of the crucial missions in pilot training. In this regard, the more realistic the battle between the human-
controlled simulator and the computer-controlled virtual plane, the more the training mission will be 
achieved. The study, which can be regarded as the first of the studies on this subject, was carried out in 2012 
[18] indicating that a computer-controlled virtual airplane with adaptable characteristics can be more 
effective than a rule-based computer-controlled virtual airplane for simulator-based training of fighter pilots. 
The learning based virtual entity is guided by a self-organizing neural network called FALCON. Based on 
the neural network which uses adaptive resonance theory (ART), one can learn and generalize situations in 
stages. It can also discover information during real-time interactions with the environment using RL. The 
study is collaborated with a multinational simulator manufacturer to evaluate the performance of smart 
virtual assets. An experiment consisting of two groups of subjects (two trainee pilots and three experienced 
pilots) was conducted using a commercial class simulation platform. Looking at the initial difficulties that 
the intelligent virtual asset presents to trainee pilots and experienced pilots, it has been shown that it is more 
suitable for modelling the opponent with unexpected manoeuvres than a rule-based virtual entity. On the 
other hand, it has been noticed by experienced pilots that smart virtual assets do not adapt well to missile war 
scenarios. 

In the report prepared by J. Roessingh et al. in 2011, with the aim of developing simulation training for 
fighter pilots, how virtual forces that display realistic tactical behaviour can be synthesized with artificial 
intelligence techniques are discussed within the scope of the smart bandits project. It was concluded that 
there was no single technique to solve all the tactical problems of intelligent CGFs involved in an air-to-air 
mission, and a hybrid system was proposed. Since the desired responses in high complexity environments 
such as simulation are usually unknown, RL is preferred to improve the responses in each experiment, while 
the neural network is used to approach the state-action space that occurs during RL [19]. 

In another article published in 2015 by Roessingh, A. Toubman et al., it is discussed that CGFs are 
problematic from the perspective that they were inappropriately rewarded and punished in some cases 
because the missile hits were stochastic. It was thought the reward design should take this problem into 
consideration and they propose a new reward design to overcome this issue. Tests show that the use of this 
new function, which rewards virtual assets based on the expected outcome of their actions, significantly 
improves the performance of CGFs in various scenarios compared to the previous reward function [20]. 

Another of the studies conducted to make simulation training for warplanes more effective was published by 
J. Källström and his friend in 2019. This study discusses how machine learning techniques can be used to 
automate the process of creating advanced, adaptive behavioral models for constructive simulations. As a 
result of the first experiments conducted many times, it has been shown that RL, especially multi-agent 
multi-objective deep RL, enables synthetic pilots to learn to cooperate and prioritize between conflicting 
targets in air combat scenarios. Although the results are promising, it has been concluded that further 
algorithm development is required to fully master the complex field of air combat simulation [21]. 

In the continuation study published by J. Källström et al in 2020, the applications of multi-agent deep RL 
that learns coordination in air combat simulation were examined. Three main use cases have been 
determined for RL within the scope of the application area. In the first scenario, curriculum-based learning 
was used to help virtual assets learn against sparse rewards and wide search space problem. In the second 
scenario, multi-agent deep deterministic policy gradient (MADDPG) and deep deterministic policy gradient 
(DDPG) methods are used. Curriculum learning has been shown to be a promising approach to address the 
complexity of the air battlefield, while multi-objective learning is a promising approach for creating virtual 
entities with a variety of attributes whose behaviours can be adjusted after learning has been completed [22]. 
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A study was conducted in 2019 on improving the control system of flight simulators using RL. The flight 
simulation control with two degree of freedom is studied and three model free RL algorithms are examined 
for this aim which are DQN, DDPG and PG. As a result of the analysis of the methods used, the DQN 
algorithm has been proven to be more suitable for discrete tasks than the other two methods. Combining the 
advantages of PG and DQN, the DDPG algorithm has been shown to perform very well in complex tasks. It 
has also been observed that in order for model-free RL algorithms to obtain sufficient data, the virtual entity 
must constantly explore the environment until the system reaches a state of convergence. Accordingly, it is 
emphasized that the inefficiency of the data is an inevitable end, and increasing the efficiency of the 
algorithm is the primary problem that needs to be solved [23]. 

In the master thesis published in 2018 [24], how RL algorithms can change the dogfight scenario in air-to-air 
simulations discussed. Tactical simulation environement (TACSI) produced by Saab AB was used in the 
study. A genetic algorithm (GA), one of the RL algorithms for the relevant scenario and genetic 
programming (GP) has been used as an optimization algorithm to investigate the solution field in the 
simulation environment and to develop artificial intelligence behaviours. Behaviuor tree (BT) by 
combination of genetic programming techniques is presented. As a result of the training, it was observed that 
the BT framework utilized a lot of computational power to constantly check conditions and pass the tree for 
each confirmation. To change this, it has been predicted that memory nodes that reduce the repetition of tree 
transitions instead of BT may be more effective [24]. 

Smart bandits, which is started under the roof of the Royal Netherlands Space Centre (NLR) is a research 
project created with the contribution of a large number of doctoral students looking for improved methods 
for behaviour modelling. A study published in 2018 as scope of the project stated that the behavioural 
capabilities of CGFs created by traditional modelling techniques are quite basic. For this reason, behaviour 
modelling has emphasized the need for a paradigm shift of CGFs towards agent-based modelling rather than 
traditional scenario-based modelling in order to created robustness against the dynamic environments. In this 
context, a learning-based artificial intelligence solution for modelling the behaviour of simulated forces is 
presented [25]. 

A dissertation study was conducted in 2020 to explore how RL can be used in a flight simulator with the goal 
of improving synthetic enemies. In this study, the aim is to provide the virtual entity with a behaviour model 
which has an ability to defeat a computer-controlled synthetic enemy in TACSI simulator environment 
thanks to Q-learning implementation. As a result of the study, it was said that existing approaches of Q-
learning in the field of RL are promising and give surprising results in some applications. But due to the lack 
of training time required to train the behaviour of artificial intelligence and some limited working conditions, 
it was concluded that the trained virtual entity could not perform as good as the behaviour performed by an 
expert [26]. 

In the literature, there are also some recent works that focuses on the intelligent manoeuvre model of 
unmanned aerial vehicles (UAV) from the control theory perspective which is crucial for future autonomous 
aerial combats [27], [28]. Manoeuvre model is a continuous domain problem and it is seen that DDPG [29] 
is chosen for this problem in these studies. In [27], some adversarial perturbations are given in order to 
provide agents robustness as in the real world. Additionally, a reward shaping method based on maximum 
entropy (MaxEnt) inverse reinforcement learning algorithm (IRL) is proposed to improve the efficiency of 
the algorithm.  

2.2 Actor Critic Networks in RL 
Reinforcement learning is a machine learning technique that tries to maximize the total reward obtained at 
the end of the episode. Contrary to supervised learning, there is not a state action pair that can be learnt. 
Instead, the aim is to learn an action for a given state to maximize the total reward at the end. In the 
application of RL, there are two main elements which are agent and environment. Agent takes an action for a 
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given state in the environment and observes the reward of this state action pair. The brain of an agent is 
called policy function which maps the state to an action.  

Actor-critic networks has become one of the most common terminology in deep RL algorithms. In this 
terminology, actor represents the policy function and critic represents the value function. Value function 
represents the expected value of the discounted sum of the rewards for a given policy. For the policy part, 
there is not significant modifications between different algorithms. However, the utilization concept and 
benefits of critic may vary in different deep RL algorithms. 

One of the way that critic can be utilized is to predict the value function so that the update is implemented 
without waiting the end of the episode [30]–[32], which is called bootstrapping. By this way, the update 
frequency is increased which is beneficial to make the training faster. With this implementation, update is 
possible even with a single action step in the environment. Another advantage of critic is that its output can 
be utilized directly to in the loss function for maximization purpose which is parallel to maximizing the 
reward [29], [31], [33] . This is an alternative to policy optimization methods, and this change enables the 
utilization of off-policy algorithms which also utilizes the old experiences before the network update, 
increasing the number of experiences and diversity for the update loop. Thirdly, it can be utilized to reduce 
the variance of cumulative reward (rewards to go) in policy optimization methods, which is indicated as 
good practice for RL [32], [34].  

Most of the scenarios in virtual environments contains more than a one single agent since generally two 
opposing teams compete. Based on the architecture which will be compatible with the simulation 
environment, there are mainly three approaches to implement actor-critic algorithms on virtual assets. Most 
preferred of the approaches is centralized method which can be addressed as god-view mode. In this method, 
global merged information gathered from all assets is fed to actor and critic networks as a state input. Hence, 
all the agents contribute their experiences during episodes to central actor and critic networks which are used 
by all the agents commonly. An important benefit of this approach is an ability to enabling cooperative 
relationships among the agents since the policy has an awareness of all different agents and their roles in 
environment. However, this sort of approach may not be realistic and can damage realism of the virtual 
environment due to limited awareness of assets in real world cases. The other approach is called 
decentralized learning and based on independency of the agents. In this method, each individual agent in the 
environment has its own actor and critic policy and each agent uses its own local observations. The situation 
becomes more real world likely in this approach since agents can partially observe and interacts with the 
other assets. Decentralized method relies on converging to specific behaviour models of each individual 
agents because of their private policies. Nonetheless, decentralized methods usually can lead agents to 
unstable policies due to the uncertainty arising from the other agent’s unpredictable actions on the 
environment. The last one of the approaches combines the first two approaches and varies according to 
implementation preferences. Common usage of combined method uses a centralized critic and decentralized 
actor policies. Agents tend to learn specific roles using their local actor policies as in the real world. Central 
critic network helps to create a common sense of motivation among all agents. In addition, common value 
function feeds on all agents, providing a broader perspective for agents to evaluate their local actions. The 
important implementation of this concept is MADDPG algorithm [35]. 

3.0 TACTICAL SIMULATION ENVIRONMENT 

Simulation environment we utilized in this project is a commercial tactical environment simulation software 
and we reason the assets allocated within it with RL algorithms. This software is a simulation software 
produced to ensure that tactical training can be delivered effectively at an affordable cost by developing 
various scenarios for combat platform simulators. The behaviour of air, land and sea platforms can be 
virtually modelled to include various combat equipment, thus providing the necessary tactical environments 
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for simulators. 

The general structure of the software designed using distributed architecture is given as follows. Model 
editing allows editing the attributes of the physical models for assets in the simulator environment and the 
subsystems or munitions that these assets can use. In the model editing module, the first of these 
subsystems, different systems in the tactical environment software inventory (e.g., tanks, fighters, and 
submarines, etc.), equipment used by these systems (e.g., weapons, sensors, jammers and communication 
devices, etc.) and the behaviour patterns that systems will perform in different scenarios are modelled. In 
the scenario editing module, which is the second module, the existing rules and the behaviour of the 
systems in the scenario are related in order to create the virtual operation environment required in 
accordance with the training requirements. 
 
Scenario editing interface allows adding assets to the scenario to be run, changing asset types, positioning, 
loading behaviour rules for assets, and assigning routes. All kinds of factors and details regarding the 
fiction of the scenario are arranged in this section. The simulation execution module is the module on 
which the prepared scenarios are executed. In a module consisting of five subunits in itself, the main 
architecture allows all subunits to run synchronously in real time. The HLA interface serves as the 
module's external interface unit. The rule engine interprets the codes defined by the Python language, 
performs the action and performs the behaviour that the entity will display in the next stage (for example, 
fire, run, and attack, etc.) determines. This is the unit that will be modified the scope of the project. This 
rule-based unit will be transformed into an artificial intelligence-based system. The other three subunits 
perform physical simulation of the entities within the scenario. 

4.0 METHODOLOGY 

In this part, the original PPO is explained and then two main algorithmic PPO concept which are utilized in 
this study are explained. These are hybrid PPO and Four-Worker PPO algorithms. In the tactical 
environment of FIVE simulators, there are multiple action groups that needs to be handled. These actions can 
be categorized under the two categories which are manoeuvre actions and discrete tactical actions. There are 
three main manoeuvre actions which are to rate of change of speed, heading and altitude. Manoeuvre actions 
are responsible for controlling the aircrafts’ three-dimensional movement in the environment. Manoeuvre 
actions have different implementation methods where the actions are considered as continuous scalar 
quantities or discretized into subsets along the range of possible manoeuvre at unit frame time.  

The discrete tactical actions can also be divided into three subsets which are self-actions, entity related fire-
sensor actions and entity related message actions. Self-actions are related with only the controlled entity such 
as turning on/off sensor, activate/deactivate route, turning on/off jammer actions. Self-actions do not require 
to interact with other assets in the environment but they cause an effect on the other entities including 
missiles. These actions have an importance, they assist the agent by allowing to agent to control its own 
aircraft and providing environmental information about situation, showing the big picture to the agent. Most 
of the time, timing of self-actions can be quite critical since some of them such as turn on/off radar action 
enables applying entity related actions such as fire guided missile to potential threat. Entity related fire-
sensor actions includes both self-entity and target entity such as firing a missile or tracking and designating 
entity.  

Entity related actions provide activity to the agent by creating a directly aimed effect on the other assets 
which are actually interesting according to the agent. Entity related message actions are related with sending 
a message to target entity by using radio communication. Because the action space that needs to be handled 
is a complex space, the original PPO implementation is not directly utilizable. Therefore, hybrid PPO 
implementation and four-worker PPO implementation are adopted in FIVE-ML.  
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4.1 PPO 
PPO[32] is a deep RL algorithm and utilizes a policy optimization method which takes its roots from the 
RL algorithm. It is working in an on-policy manner such that only the experiences after last update are 
utilized in the next model update. It has an implementation for both continuous and discrete action spaces. 
For discrete action space, categorical sampling is utilized in order to implement exploration, while 
Gaussian sampling is chosen for exploration in continuous action space.  
 
Policy optimization methods requires the update within the specific region which is called trust region [34] 
because of the first order approximation in deriving the method. Therefore, TRPO implements it as KL-
divergence constraint, while PPO implements the clipping mechanism. The clipping objective is called as 
surrogate objective and can be written as below: 
 

 
 
in which ϵ is a (small) hyperparameter which roughly says how far away the new policy is allowed to go 
from the old policy. Due to the unstable characteristic of the environment, this value is usually kept small 
and it allows policy to slightly change from its previous baseline. Although clipping concept is claimed to 
superior over KL-divergence concept implementation, there are also works which claims that the superiority 
of PPO over TRPO is not mainly because of clipping mechanism but because of the code-level optimizations 
[36].  

4.2  Hybrid PPO 
Hybrid PPO treats the action space as two groups in order to cover entire possible actions which can be 
applied by the assets in the environment. These are manoeuvre actions and tactical discrete actions. For this 
aim, two policy function and a single central critic function is utilized. Critic network uses state input to 
calculate value of the actions. Manoeuvre actor policy estimates the rate of change speed, heading and 
altitude to be applied for movement of the agent in the following step while tactical actor decides to which 
tactical action will be chosen and treats all the tactical actions as separate output nodes. Tactical actor policy 
basically calculates the probability distribution among the tactical actions according to return of reward 
function. Under mentorship of critic, tactical actor tries to popularize actions with good outcome and 
suppress actions with bad outcome. The surrogate objective losses of two parts are also aggregated. 

4.3  Four Worker PPO 
The four worker PPO assumes the action space with 4 groups of actions. These are manoeuvre actions, self-
sensor actions, entity related fire-sensor actions and entity related message action. All worker has 
independent policy function and critic. The main advantage of this scheme is that it allows multiple tactical 
discrete actions together. Another advantage is that it makes the joint implementation of imitation learning 
(supervised learning) and RL much feasible because the multiple actions in the rule-based behaviour should 
not be allowed for single action imitation learning, which is a necessity to continue RL training by utilizing 
the policy of imitation learning as a starting point. Within four worker approach, each worker can be 
considered as experts in their own field. Each worker is rewarded based on their separate reward function 
and each reward function provides the related motivation to corresponding worker. Thus, workers will be 
able to focus on the reward signals of the environment that concern them.   

5.0  EXPERIMENTS 

In this part, experimental setup, experimental details, evaluation metrics and experimental results are 
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provided.  

5.1 Experimental Setup 
Some modifications are implemented on the existing FIVE simulator software in order to implement the 
trainings and make inference from the trained behaviour model. In order to understand the modifications, the 
design elements created for the experiment, the hardware and software details used within the scope of the 
project are explained in this section. 

Training algorithms are used to smarten up virtual entities in simulations. These algorithms enable virtual 
entities to learn optimum behaviours. Training algorithms should be designed in order to transform the 
experiences of the entities in the simulator into artificial intelligence functions (i.e., policy functions) via 
neural networks which models behaviour rule of the virtual entity. After being trained with training 
algorithms, rule-based virtual entities turn into learning-based intelligent virtual entities. Three basic 
elements involved in designing simulators equipped with smart virtual entities are shown in Figure 1. As 
seen in the figure, the simulator interacts with intelligent virtual entities it contains. In order to transform the 
experiences of virtual entities into policy functions, it is necessary to determine the state from the simulator 
and make a decision in the light of this state. The information state coming to the virtual entities and the 
actions taken by them are input to the training algorithms. 

 

Figure 1 The main elements of the FIVE-ML system design 

The structure in simulation design consists of the combination of three sub-sections: training server interface, 
communication interface and physics engine interface. The training server interface is the part that contains 
the artificial intelligence engine. The communication interface is used to communicate between the training 
server and the physics engine interface. The physics engine interface is a software block that contains the 
components of the simulation where the laws of physics are simulated. These relationships are described in 
Figure 2 
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Figure 2 The relationship between the system interfaces 

For the trainings, HPE ML350 server is utilized with 2 RTX 3090 GPUs, 128 GB ram and 2 HPE ML350 
Gen10 Xeon-S 4215R, each has 8 cores with 3.2 GHz. The current version of FIVE software has an ability 
to create 8 simulation instances. Therefore, 8 different trainings can be run independently or 8 instances can 
be utilized for single training. 1K GYM steps are played within approximately half an hour.  

5.2 Experimental Details 
The trainings are implemented using hybrid PPO and Four-Worker PPO algorithms. For PPO algorithms, 
episode horizon is limited to 250 steps per agent. Update timestep is set to 4000. Learning rate of policy 
network is set to 0.0003 and learning rate of the value network is set to 0.001. The hyperbolic tanh function 
is utilized conveniently with the original PPO baseline [32], [37]. The standard deviation of the continuous 
PPO model is set to 0.3. The epoch of each update is set to 50. From the multi-agent perspective, 
decentralized approach is followed where only the local state is available to the agent and actions of each 
agent are determined separately for each agent (intelligent entity).  

For the done condition, other than the episode horizon, two main criteria are determined. One of the criteria 
is the destruction of any of the intelligent virtual entity which is controlled by RL trained behaviour rule. The 
other condition is the complete destruction of the enemy entities and there are three enemy entities in the 
scenarios of this study. For the RL trainings, constant starting location implementation is utilized.  

The scenarios in these experiments are air-to-ground and air-to-air scenarios which can be seen in Figure 3 
and Figure 4. As seen in the both scenario, there are three enemy and three friend entities. In these scenarios, 
intelligent behaviour rules are loaded onto the friend F-16 units which are labelled as F-16_01 and F-16_02 
in the Figure 3 and Figure 4. The other F-22 entity and enemy entities are controlled by HAVELSAN rule-
based behaviour rules. In air-to-air scenario, F-22 aircraft which is commander of the formation detects and 
determines which hostile entity to be engaged with its long-range advanced radar system. Then commander 
guides the wingman F-16 aircrafts which are intelligent agents with datalink. The key tactic to destroy the 
enemy entities is to utilized IR missile within a proper firing range (firing range of IR missile is less than 
radar missile) instead of radar missile because the rule loaded to enemy entities does not have a defence 
strategy against IR. In the air-to-ground scenario, the friend entities and the relationship between them is 
mainly the same. While engaging with ground defence units such as ZSU-23-4, the key to destroy the hostile 
unit is approaching from behind and leaving the sight area of hostiles so that ground defence system will be 
ineffective as it cannot deploy turret position properly. The original scenarios are labelled as 3-3 air-to-
ground and 3-3 air-to-air scenarios. Additional air-to-ground scenario is also reproduced by removing the F-
16_02 entity which is called 3-2 air-to-ground scenario.  
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Figure 3 A snapshot from the air-to-air scenario from the tactical environment software  

 

Figure 4 A snapshot from the air-to-ground scenario from the tactical environment software 

5.3 Evaluation Metrics 
For the evaluation of training performances, two important metrics are determined. These are own hit and 
enemy hit metrics. Own hit defines or represents the punishment for the hit of agent itself. Enemy hit 
represents the hit reward of the enemy entities. The impact of other metrics is more negligible than own hit 
and enemy hit metrics. The main idea of this approach is to show the agent the main goals to achieve 
throughout the scenario and wait for it to learn from his own experience the tactics agent should apply during 
the exploration.  
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The damages of the entities are represented with four damage scales which are from zero to three and three 
represents the total destruction. For the total destruction of the intelligent virtual entity, the punishment is set 
to -500 and it is linear with the damage levels. For the total destruction of every enemy entity, the reward is 
200 and it increases linearly with the damage levels. The own hit punishment does not change depending on 
the intelligent virtual entity. However, the maximum of enemy hit reward changes with the number of 
intelligent virtual entities which is one or two in the experiments of this study. The reason for this change is 
that every intelligent entity gets a reward for every enemy hit it scores. However, for the last kill, only the 
one enemy gets the enemy hit reward because of done criteria. Therefore, for 3 enemy and 1 intelligent entity 
case, the maximum hit reward is 600, while it is 1000 for 2 intelligent entity case. For the logging of metrics, 
wandb [38] machine learning development tools is utilized. 

5.4 Experimental Results 
In this section, the experimental analysis of RL trainings is covered. For this part, 3-2 air-to-ground, 3-3 air-
to-ground and 3-3 air-to-air scenarios are utilized. The metrics which are made use of for the analysis are 
enemy hit rewards and own hit punishments. The results in this part are shown in the smoothed format 
because the original metrics are very noisy due to the exploration techniques existing in RL architectures.  

The result of metrics for 3-2 air-to-ground and 3-3 air-to-air scenarios are shown in Figure 5 and Figure 6, 
respectively. As seen in the figures, the agent or agents can learn to reduce the own hit punishments and 
increase the enemy hit reward during the training progress. However, it should be denoted that the enemy hit 
reward increasing in a decreasing rate and algorithm cannot reach the maximum enemy hit reward (which 
are 600 and 1000 points respectively) and maximum own hit punishment (which is 0). For 3-2 air-to-ground 
training, enemy hit reaches to 513 points out of 600 after 140K steps. For 3-3 air-to-air training, enemy hit 
reaches 913 out of 1000 points after 700K steps.  As a result of these trainings, the intelligent entities learn to 
turn on jammer or released chaff as a defence strategy against radar missiles. It learns to choose convenient 
missile type according to the target entity. It learns to utilize the missiles effectively with respect to firing 
range. It learns limited manoeuvre capability.  

Another analysis that is implemented is the utilization of the trained policy of 3-2 air-to-ground scenario as a 
starting point 3-3 air-to-air scenarios. This analysis is shown in Figure 7. Firstly, it can be observed that, 
despite the small change in state space, agent can preserve the learnt abilities to some extent because enemy 
hits and own hits are started from a good point. The starting point of enemy hit reward of 3-2 air-to-ground 
trained policy in 3-3 air-to-ground is approximately 800 points out of 1000. After 200K trainings, the agents 
get about 930 points out of 1000. From the own hit punishment perspective, there is not a significant change 
because pre-trained policy has already learned to survive.  

Another analysis that is covered in this study is the joint implementation of imitation learning and RL. For 
this analysis, 3-2 air-to-ground scenario is selected. Then, with imitation learning by utilizing supervised 
learning techniques, HAVELSAN rule-based behaviour rule is imitated via supervised learning. 
Additionally, imitation learning is implemented on the data gathered from the different locations of the 
environment, therefore, the policy has a better generalization capability against location change, therefore 
has a better manoeuvre capability. Then from this starting point, RL algorithms are trained. The result of this 
analysis is shown in Figure 8. Although the supervised learning model has 400 enemy hit points at the 
beginning, it reaches 590 enemy hit points out of 600 after 400K steps. This is an important result because 
this is the highest enemy hit ratio compared to previously mentioned trainings. For the supervised learning 
part, 4-worker PPO is utilized.  
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Figure 5 Smoothed score graph of enemy hit rewards and own hit rewards in 3-2 air-to-ground 
scenario training. On the graph, enemy hits that increase at a decreasing rate are shown in the 
graph above (plotted in green), while saturating own hit scores are shown in the graph below 

(plotted in red). 

 

 

Figure 6 Smoothed score graph of enemy hit rewards and own hit rewards in 3-3 air-to-air 
scenario training. Enemy hits that increase at a decreasing rate are shown in the graph above 

(plotted in green), while saturating own hit scores are shown in the graph below (plotted in red). 
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Figure 7 The reinforcement learning training performance of 3-3 air-to-ground scenario from the 
starting pre-trained policy model of 3-2 air-to-ground scenario with RL training. On the graph, 
enemy hits are shown in the graph above (plotted in green), while already saturated own hit 

scores are shown in the graph below (plotted in red). 

 
 

Figure 8 The reinforcement learning training of 3-2 air-to-ground scenario from the starting pre-
trained policy model of 3-2 air-to-ground scenario with supervised learning training. On the 

graph, enemy hits are shown in the graph above (plotted in green), while already saturated own 
hit scores are shown in the graph below (plotted in red). 
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6.0  CONCLUSION 

In this work, namely FIVE-ML, the transition from currently existing the rule-based behaviour models of 
FIVE software to learning-based intelligent behaviour models are analysed. For this aim, firstly the training 
structure to FIVE software is modified and developed further in order to run RL algorithms on the software. 
With the result of first-stage experiments, it is shown that RL-based behaviour models can outperform the 
rule-based HAVELSAN behaviour models in both air-to-air and air-to-ground scenarios. Moreover, it is also 
shown the concept of imitation learning with RL can also be utilized which is crucial to reduce the training 
times. 

As a future work, the study will be expanded to other scenario types such as air to air defence, air to ground 
SEAD, and ground to air defence. Moreover, the complexity of the scenarios is planned to be increased by 
appreciating the number of virtual entities and intelligent virtual entities. Moreover, comprehensive trainings 
will be implemented in order to provide a better robustness against the changes in the type and class of the 
enemy entities, the changes in the location, heading and altitude of all entities.   
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